肝脏转运体介导的与口服降糖药相关药物相互作用研究进展

张帆,魏玉辉,李波霞,武新安*

中国药学杂志 ›› 2014, Vol. 49 ›› Issue (13) : 1099-1103.

PDF(1176 KB)
PDF(1176 KB)
中国药学杂志 ›› 2014, Vol. 49 ›› Issue (13) : 1099-1103. DOI: 10.11669/cpj.2014.13.002
综述

肝脏转运体介导的与口服降糖药相关药物相互作用研究进展

  • 张帆,魏玉辉,李波霞,武新安*
作者信息 +

Progress in Liver Transporter-Mediated Drug Interactions with Oral Antidiabetic Agents

  • ZHANG Fan, WEI Yu-hui , LI Bo-xia, WU Xin-an*
Author information +
文章历史 +

摘要

目的 综述肝脏转运体介导的与口服降糖药相关的药物相互作用。方法 通过查找近10年相关文献资料对肝脏转运体介导的与口服降糖药相关的药物相互作用进行总结阐述。结果 口服降糖药是治疗2型糖尿病的首选药物,糖尿病患者在服用口服降糖药的同时常服用其他多种药物治疗相关疾病,这使药物相互作用发生的概率升高。多数口服降糖药在体内需经过肝脏,肝脏中除含有丰富的代谢酶外还含有多种转运体,当口服降糖药与合用药物分享相同肝脏转运体时,药物相互作用发生概率升高,是引起与口服降糖药相关的药物相互作用的重要因素之一。结论 肝脏转运蛋白介导的与口服降糖药相关的药物相互作用是普遍存在的,为了减少糖尿病患者因同时服用多种药物而产生的不良反应,促进临床合理用药,有必要对肝脏转运体介导的与口服降糖药相关的药物相互作用进行深入研究。

Abstract

OBJECTIVE To summarize the liver transporter-mediated drug interactions with oral antidiabetic agents. METHODS The related documentations in near ten years were searched and useful information to clarify liver transporter-mediated drug interactions with oral antidiabetic agents was summarized. RESULTS The drugs of first choice for treatmenting type 2 diabetes are oral antidiabetic agents. In clinic, oral antidiabetic agents often co-administrate with other drugs which may cause the rate of drug-drug interaction increasing. In vivo, amount of oral antidiabetic agents are distributed in liver where exist may kinds of metabolic enzymes and transporters, when drugs were transported by same liver transporter, the rate of drug-drug interactions will increase. So transporters mediated drug interaction is one of the main mechanism in drug interation with oral antidiabetic agents. CONCLUSION Liver transporters play important role in drug interactions with oral antidiabetic agents. for decreasing rate of drug-drug interactions and promoting rational use of drug, it is necessary to review and research the liver transporter-mediated drug interactions with oral antidiabetic agents.

关键词

糖尿病 / 口服降糖药 / 肝脏转运体 / 药物相互作用

Key words

diabetes / oral antidiabetic agent / liver transporter / drug interaction

引用本文

导出引用
张帆,魏玉辉,李波霞,武新安*. 肝脏转运体介导的与口服降糖药相关药物相互作用研究进展[J]. 中国药学杂志, 2014, 49(13): 1099-1103 https://doi.org/10.11669/cpj.2014.13.002
ZHANG Fan, WEI Yu-hui , LI Bo-xia, WU Xin-an*. Progress in Liver Transporter-Mediated Drug Interactions with Oral Antidiabetic Agents[J]. Chinese Pharmaceutical Journal, 2014, 49(13): 1099-1103 https://doi.org/10.11669/cpj.2014.13.002
中图分类号: R969   

参考文献

[1] ZHU Y, SONG Z H, FENG C L. The rational administration guidance of diabetics . Chin Rem Clin(中国药物与临床), 2009, 47(36): 51-52.[2] TORNIO A, NIEMI M, NEUVONEN P J, et al. Drug interactions with oral antidiabetic agents: Pharmacokineticmechanisms and clinical implications. Trends Pharm Sci, 2012, 33(6): 312-322.[3] CHANG W H, JIANG X M, CHANG C H. Rational use of drug of diabetes. Shihezi Sci Tech, 2005, (5): 48-49.[4] SAFAVI M, FOROUMADI A, ABDOLLAHI M. The importance of synthetic drugs for type 2 diabetes drug discovery. Expert Opin Drug Discov, 2013, 8(11): 1339-1363.[5] PERFETTI R, AHMAD A. Novel sulfonylurea and non-sulfonylurea drugs to promote the secretion of insulin.Trends Endoc Metabo, 2000, 11(6): 218-223.[6] STANDL E, SCHNELL O. Alpha-glucosidase inhibitors 2012- cardiovascular considerations and trial evaluation. Diab Vasc Dis Res, 2012, 9(3): 163-169.[7] GRAEFE-MODY U, RETLICH S, FRIEDRICH C. Clinical pharmacokinetics and pharmacodynamics of linagliptin. Clin Pharmacokinet, 2012, 51(7): 411-427.[8] TOYAMA K, YONEZAWA A, MASUDA S, et al. Loss of multidrug and toxin extrusion 1 (MATE1) is associated with metformin-induced lactic acidosis. Br J Pharmacol, 2012, 166(3): 1183-1191.[9] KONIG J, CUI Y, NIES A T, et al. Localization and genomic organization of a new hepatocellular organic anion transporting polypeptide. J Biol Chem, 2000, 275(30): 23161-23168. KONIG J, CUI Y, NIES A T, et al. A novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane. Am J Physiol Gastrointest Liver Physiol, 2000, 278(1): 156-164. HSIANG B, ZHU Y, WANG Z, et al. A novel human hepatic organic anion transporting polypeptide (OATP2). Identification of a liver-specific human organic anion transporting polypeptide and identification of rat and human hydroxymethylglutaryl-CoA reductase inhibitor transporters. J Biol Chem, 1999, 274(52): 37161-37168. SHEN L, SHAH B R, REYES E M, et al. Role of diuretics, beta blockers, and statins in increasing the risk of diabetes in patients with impaired glucose tolerance: Reanalysis of data from the NAVIGATOR study. BMJ, 2013, 347:6745. BACHMAKOV I, GLAESER H, FROMM M F, et al. Interaction of oral antidiabetic drugs with hepatic uptake transporters: Focus on organic anion transporting polypeptides and organic cation transporter 1. Diabetes, 2008, 57(6): 1463-1469. KLATT S, FROMM M F, KONIG J. The influence of oral antidiabetic drugs on cellular drug uptake mediated by hepatic OATP family members. Basic Clin Pharmacol Toxicol, 2013, 112(4): 244-250. LILJA J J, NIEMI M, FREDRIKSON H, et al. Effects of clarithromycin and grapefruit juice on the pharmacokinetics of glibenclamide. Br J Clin Pharmacol, 2007, 63(6): 732-740. GRUBE M, KOCK K, OSWALD S, et al. Organic anion transporting polypeptide 2B1 is a high-affinity transporter for atorvastatin and is expressed in the human heart. Clin Pharmacol Ther, 2006, 80(6): 607-620. SATOH H, YAMASHITA F, TSUJIMOTO M, et al. Citrus juices inhibit the function of human organic anion-transporting polypeptide OATP-B. Drug Metab Dispos, 2005, 33(4): 518-523. ZHENG H X, HUANG Y, FRASSETTO L A, et al. Elucidating rifampin's inducing and inhibiting effects on glyburide pharmacokinetics and blood glucose in healthy volunteers: Unmasking the differential effects of enzyme induction and transporter inhibition for a drug and its primary metabolite. Clin Pharmacol Ther, 2009, 85(1): 78-85. AHLIN G, KARLSSON J, PEDERSEN J M, et al. Structural requirements for drug inhibition of the liver specific human organic cation transport protein 1. J Med Chem, 2008, 51(19): 5932-5942. DING Y, JIA Y, SONG Y, et al. The effect of lansoprazole, an OCT inhibitor, on metformin pharmacokinetics in healthy subjects. Eur J Clin Pharmacol, 2014,70(2):141-146. MINEMATSU T, GIACOMINI K M. Interactions of tyrosine kinase inhibitors with organic cation transporters and multidrug and toxic compound extrusion proteins. Mol Cancer Ther, 2011, 10(3): 531-539. KIS E, IOJA E, NAGY T, et al. Effect of membrane cholesterol on BSEP/Bsep activity: Species specificity studies for substrates and inhibitors. Drug Metab Dispos, 2009, 37(9): 1878-1886. GEDEON C, BEHRAVAN J, KOREN G, et al. Transport of glyburide by placental ABC transporters: Implications in fetal drug exposure. Placenta, 2006, 27(11-12): 1096-1102. GEDEON C, ANGER G, PIQUETTE-MILLER M, et al. Breast cancer resistance protein: Mediating the trans-placental transfer of glyburide across the human placenta. Placenta, 2008, 29(1): 39-43. HEMAUER S J, PATRIKEEVA S L, NANOVSKAYA T N, et al. Role of human placental apical membrane transporters in the efflux of glyburide, rosiglitazone, and metformin. Am J Obstet Gynecol, 2010, 202(4):381-387. MITA S, SUZUKI H, AKITA H, et al. Inhibition of bile acid transport across Na+/taurocholate cotransporting polypeptide (SLC10A1) and bile salt export pump (ABCB 11)-coexpressing LLC-PK1 cells by cholestasis-inducing drugs. Drug Metab Dispos, 2006, 34(9): 1575-1581. KAJOSAARI L I, NIEMI M, NEUVONEN M, et al. Cyclosporine markedly raises the plasma concentrations of repaglinide. Clin Pharmacol Ther, 2005, 78(4): 388-399. NIEMI M, NEUVONEN P J, KIVISTO K T. The cytochrome P4503A4 inhibitor clarithromycin increases the plasma concentrations and effects of repaglinide. Clin Pharmacol Ther, 2001, 70(1): 58-65. NIEMI M, BACKMAN J T, NEUVONEN M, et al. Effects of gemfibrozil, itraconazole, and their combination on the pharmacokinetics and pharmacodynamics of repaglinide: Potentially hazardous interaction between gemfibrozil and repaglinide. Diabetologia, 2003, 46(3): 347-351. TORNIO A, NIEMI M, NEUVONEN M, et al. The effect of gemfibrozil on repaglinide pharmacokinetics persists for at least 12 h after the dose: Evidence for mechanism-based inhibition of CYP2C8 in vivo. Clin Pharmacol Ther, 2008, 84(3): 403-411. MARION T L, LESLIE E M, BROUWER K L. Use of sandwich-cultured hepatocytes to evaluate impaired bile acid transport as a mechanism of drug-induced hepatotoxicity. Mol Pharm, 2007, 4(6): 911-918. KRISHNA R, BERGMAN A, LARSON P, et al. Effect of a single cyclosporine dose on the single-dose pharmacokinetics of sitagliptin (MK-0431), a dipeptidyl peptidase-4 inhibitor, in healthy male subjects. J Clin Pharmacol, 2007, 47(2): 165-174. UMEHARA K I, IWATSUBO T, NOGUCHI K, et al. Comparison of the kinetic characteristics of inhibitory effects exerted by biguanides and H2-blockers on human and rat organic cation transporter-mediated transport: Insight into the development of drug candidates. Xenobiotica, 2007, 37(6): 618-634. MEYER Z U, SCHWABEDISSEN H E, VERSTUYFT C, et al. Human multidrug and toxin extrusion 1 (MATE1/SLC47A1) transporter: Functional characterization, interaction with OCT2 (SLC22A2), and single nucleotide polymorphisms. Am J Physiol Renal Physiol, 2010, 298(4): 997-1005.
PDF(1176 KB)

Accesses

Citation

Detail

段落导航
相关文章

/